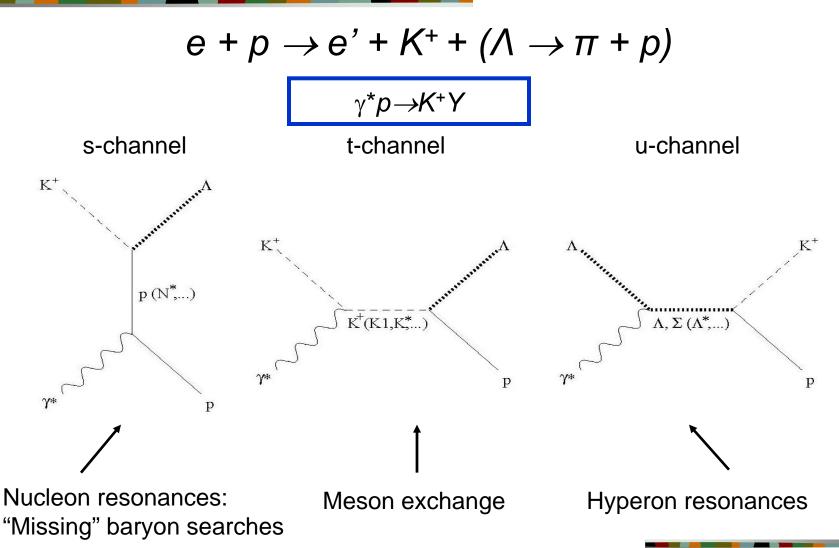
A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

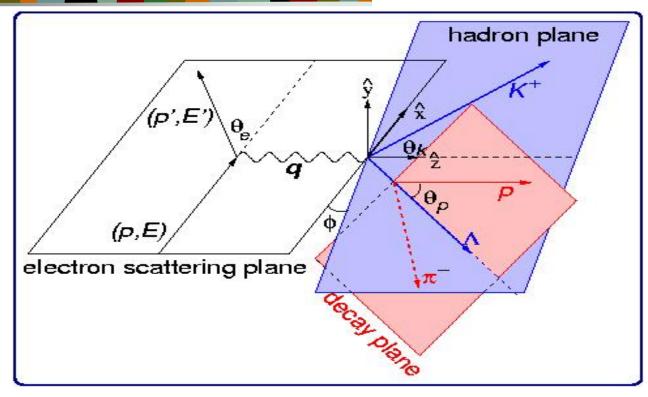
Marianna Gabrielyan
Florida International University
HUGS 2008

- Why study electromagnetic production of kaons?
- Formalism.
- Polarization observables.
- CLAS detector and capabilities.
- Analysis
- Summary and future work.

Electromagnetic Production of Kaons



Kinematics Definitions



v=E-E'.....Energy transferred by virtual photon.

 $Q^2 = -q^2 = 4EE \sin^2(\theta_e/2)$Momentum of virtual photon.

 $W=M_p+2M_pv-Q^2$C.M. mass of intermediate state.

Cross Section for Electroproduction

$$\frac{d^3\sigma}{dE'd\Omega_e d\Omega_K^*} = \Gamma \frac{d\sigma_v}{d\Omega_K^*}$$

Polarized beam, target & recoil hyperon

$$\frac{d\sigma_{v}}{d\Omega_{K}^{*}} = K_{f} \sum_{\alpha,\beta} S_{\alpha} S_{\beta} \Big[R_{T}^{\beta\alpha} + \epsilon_{L} R_{L}^{\beta\alpha} + \sqrt{2\epsilon_{L}(1+\epsilon)} ({}^{c}R_{LT}^{\beta\alpha}\cos\Phi + {}^{s}R_{LT}^{\beta\alpha}\sin\Phi) \\
+ \epsilon ({}^{c}R_{TT}^{\beta\alpha}\cos2\Phi + {}^{s}R_{TT}^{\beta\alpha}\sin2\Phi) \\
+ h\sqrt{2\epsilon_{L}(1-\epsilon)} ({}^{c}R_{LT'}^{\beta\alpha}\cos\Phi + {}^{s}R_{LT'}^{\beta\alpha}\sin\Phi) + h\sqrt{1-\epsilon^{2}}R_{TT'}^{\beta\alpha} \Big].$$

$$S_{\alpha} = (1, \hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}) \qquad S_{\beta} = (1, \hat{S}_{x'}, \hat{S}_{y'}, \hat{S}_{z'})$$

Study kinematic dependence of observables over a broad range of W, Q^2 , and $\cos \theta_K^*$.

Cross Section for Electroproduction

$$\frac{d^{5}\sigma}{dE'd\Omega_{e}d\Omega_{K}^{*}} = \Gamma \frac{d^{2}\sigma_{v}}{d\Omega_{K}^{*}}$$

Unpolarized beam/target/recoil

$$\sigma_0 \equiv \left(\frac{d\sigma_v}{d\Omega_K^*}\right)^{00} = K_f \left[R_T^{00} + \epsilon_L R_L^{00} + \sqrt{2\epsilon_L (1+\epsilon)} R_{LT}^{00} \cos \Phi + \epsilon R_{TT}^{00} \cos 2\Phi \right]$$

$$\Gamma = \frac{\alpha}{8\pi^2} \frac{W}{M_p^2 E^2} (W^2 - M_p^2) \left[\frac{1}{Q^2 (1 - \epsilon)} \right]$$

$$\epsilon = \frac{1}{1 + \frac{2\mathbf{q}^2}{Q^2} \tan^2 \frac{\theta_e}{2}}, \quad \epsilon_L = \frac{Q^2}{\nu^2} \epsilon.$$

Cross Section for Electroproduction

Polarized beam & recoil hyperon, unpolarized target.

$$\frac{d\sigma_{v}}{d\Omega_{K}^{*}} = \sigma_{0}(1 + hA_{LT'} + P_{x'}\hat{x}' \cdot \hat{S}' + P_{y'}\hat{y}' \cdot \hat{S}' + P_{z'}\hat{z}' \cdot \hat{S}')$$

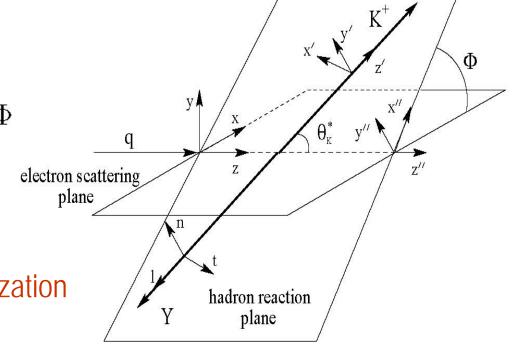
Where:

$$A_{LT'} = \frac{K_f}{\sigma_0} \sqrt{2\epsilon_L (1-\epsilon)} R_{LT'}^{00} \sin \Phi$$

$$P_{i'} = P_{i'}^0 + h P_{i'}'$$

Transferred polarization

Induced polarization



Polarization Observables in (x', y', z')

Induced polarization

$$\begin{split} P_{x'}^0 &= \frac{K_f}{\sigma_0} \left(\sqrt{2\epsilon_L (1+\epsilon)} R_{LT}^{x'0} \sin \Phi + \epsilon \ R_{TT}^{x'0} \sin 2\Phi \right) \\ P_{y'}^0 &= \frac{K_f}{\sigma_0} \left(R_T^{y'0} + \epsilon_L R_L^{y'0} + \sqrt{2\epsilon_L (1+\epsilon)} R_{LT}^{y'0} \cos \Phi + \epsilon R_{TT}^{y'0} \cos 2\Phi \right) \\ P_{z'}^0 &= \frac{K_f}{\sigma_0} \left(\sqrt{2\epsilon_L (1+\epsilon)} R_{LT}^{z'0} \sin \Phi + \epsilon R_{TT}^{z'0} \sin 2\Phi \right), \end{split}$$

Transferred polarization

$$\begin{split} P'_{x'} &= \frac{K_f}{\sigma_0} \left(\sqrt{2\epsilon_L (1-\epsilon)} R_{LT'}^{x'0} \cos \Phi + \sqrt{1-\epsilon^2} R_{TT'}^{x'0} \right) \\ P'_{y'} &= \frac{K_f}{\sigma_0} \sqrt{2\epsilon_L (1-\epsilon)} R_{LT'}^{y'0} \sin \Phi \\ P'_{z'} &= \frac{K_f}{\sigma_0} \left(\sqrt{2\epsilon_L (1-\epsilon)} R_{LT'}^{z'0} \cos \Phi + \sqrt{1-\epsilon^2} R_{TT'}^{z'0} \right). \end{split}$$

M. Gabrielyan, Florida International University, HUGS 2008

Integrated Polarization Observables

$\mathcal{P}_{x'}^0$	0							
$\mathcal{P}_{y'}^0$	$K_I(R_T^{y'0} + \epsilon_L R_L^{y'0})$							
$\mathcal{P}_{z'}^0$	0							
$\mathcal{P}'_{x'}$	$K_I\sqrt{1-\epsilon^2}R_{TT'}^{x'0}$							
$\mathcal{P}'_{y'}$	0							
$\mathcal{P}'_{z'}$	$K_I\sqrt{1-\epsilon^2}R_{TT'}^{z'0}$							

\mathcal{P}_x^0	0
\mathcal{P}_y^0	$\frac{1}{2}\sqrt{2\epsilon_L(1+\epsilon)}K_I(R_{LT}^{x'0}\cos\theta_K^* + R_{LT}^{y'0} + R_{LT}^{z'0}\sin\theta_K^*)$
\mathcal{P}_z^0	0
\mathcal{P}'_x	$\frac{1}{2}\sqrt{2\epsilon_L(1-\epsilon)}K_I(R_{LT'}^{x'0}\cos\theta_K^* - R_{LT'}^{y'0} + R_{LT'}^{z'0}\sin\theta_K^*)$
\mathcal{P}_y'	0
\mathcal{P}_z'	$\sqrt{1-\epsilon^2}K_I(-R_{TT'}^{x'0}\sin\theta_K^* + R_{TT'}^{z'0}\cos\theta_K^*)$

\mathcal{P}_t^0	0
\mathcal{P}_n^0	$K_I(R_T^{y'0} + \epsilon_L R_L^{y'0})$
\mathcal{P}_{ℓ}^{0}	0
\mathcal{P}_t'	$-K_I\sqrt{1-\epsilon^2}R_{TT'}^{x'0}$
\mathcal{P}'_n	0
\mathcal{P}'_ℓ	$-K_I\sqrt{1-\epsilon^2}R_{TT'}^{z'0}$

$$P_{\ell} = -P_{z'}$$
 $P_{n} = P_{y'}$ $P_{t} = -P_{x'}$ $K_{I} = \frac{1}{R_{T}^{00} + \epsilon_{L} R_{L}^{00}}$

ONLY induced polarization part survives for normal components and ONLY transferred part for in-plane components.

Polarization Extraction

Parity non-conservation in weak decay allows to extract recoil polarization from p angular distribution.

$$\frac{dN}{d\cos\theta_p^{RF}} = N(1 + \alpha P_{\Lambda}\cos\theta_p^{RF}),$$

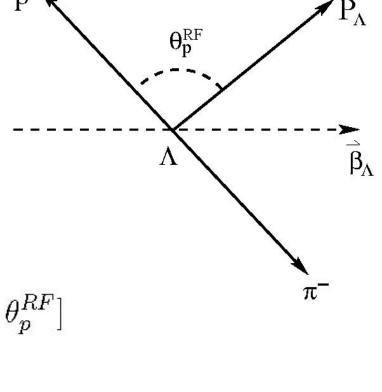
$$P_{\Lambda} = P_{\Lambda}^0 \pm P_b P_{\Lambda}',$$

$$dN^{\pm}$$

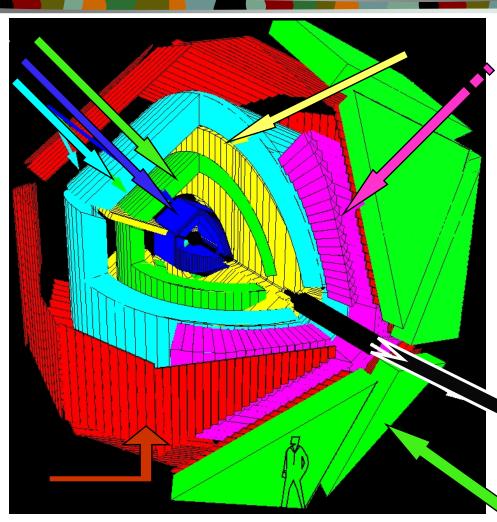
$$\frac{dN^{\pm}}{d\cos\theta_p^{RF}} = N[1 + \alpha(P_{\Lambda}^0 \pm P_b P_{\Lambda}')\cos\theta_p^{RF}]$$

Where:
$$\alpha = \frac{2a_sRe(a_p^*)}{|a_s|^2 + |a_p|^2}$$

$$\pi_{\Lambda} = \pi_{Proton} \pi_{Pion} (-1)^l$$



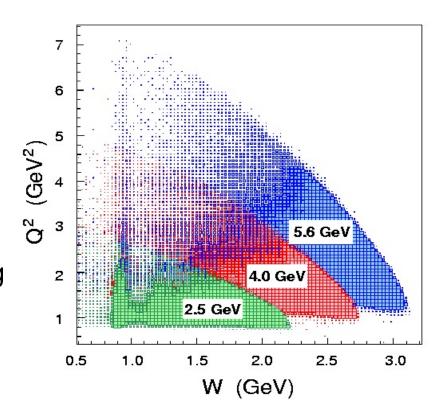
CEBAF Large Acceptance Spectrometer



- •Torroidal magnetic field in region 2
- •3 regions of drift chambers located spherically around target provide charge particle tracking for angle and momentum reconstruction.
- •Cherenkov detectors provide e/π separation
- •Electromagnetic calorimeter gives
 Lenergy measurement for
 electrons and neutrals and also e/π
 separation
 beam direction
- •Time of flight scintillators $\rightarrow \beta \rightarrow$ particle ID

Experimental Capabilities

- Continuous electron or (tagged) photon beams up to ~5.7 GeV.
- Luminosity up to ~10³⁴/cm²/s.
- LH₂ target for most *N** experiments also polarized target capability.
- Polarized electron beam with P≈85% and polarized photon facility.
- $8^{\circ} < \theta < 142^{\circ} (\sigma_{\theta} \sim 1 \text{ mrad})$ full $\phi (\sigma_{\phi} \sim 4 \text{ mrad})$
- $\Delta p/p \sim 1-2\%$ depending on field setting and particle momentum
- Large kinematic acceptance in Q^2 , W, as well as electron and hadron scattering angles
- → Obvious importance in studying kinematic dependencies of cross sections and polarization observables. → access to interference structure functions.



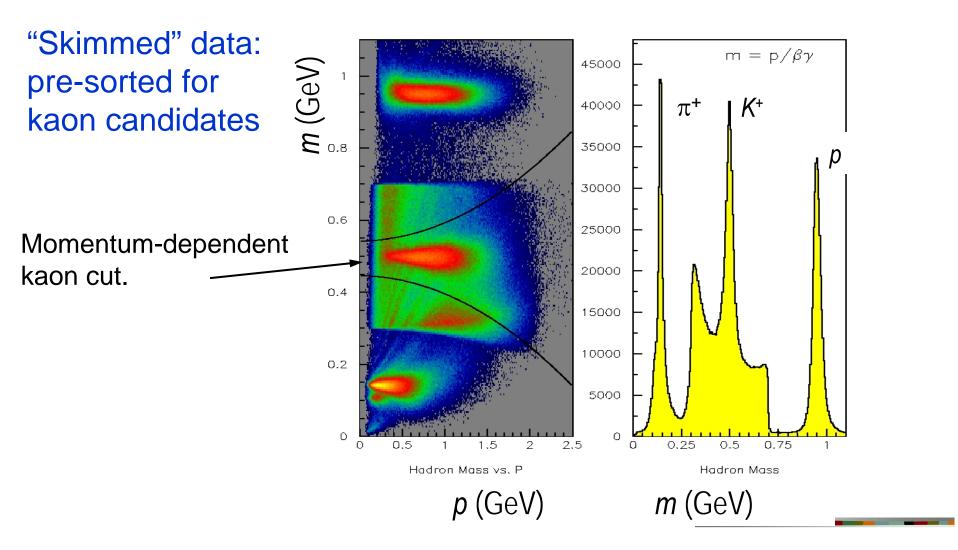
Analysis Method Summary

- Electron identification
 - Good Cerenkov signal
 - Good total energy measurement
 - Good traceback to target
 - Fiducial cuts (flat acceptance region).
 - Momentum corrections (detector misalignments)
- adron (K,p) identification $m = \frac{p}{\beta \gamma}$ ■ Hadron (*K*,*p*) identification

$$m = \frac{P}{\beta \gamma}$$

- Momentum corrections
- Hyperon (Λ, Σ^0) identification
 - Reconstructed missing mass for $e+p\rightarrow e'K'(Y)$
 - For recoil polarization observables $e+p \rightarrow e'K^+p(\pi^-)$ include π^- missing-mass cut.

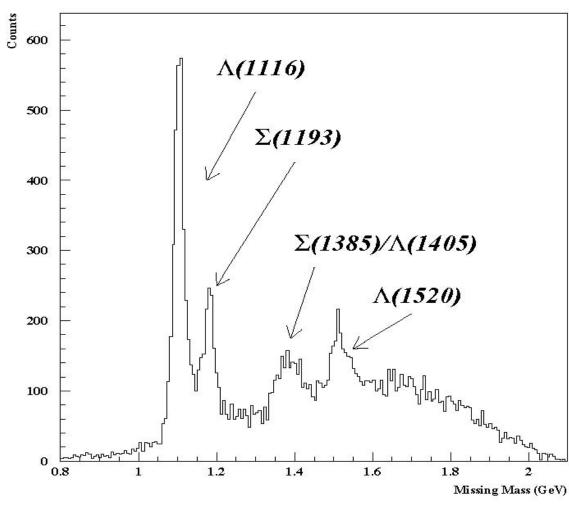
Hadron Identification



M. Gabrielyan, Florida International University, HUGS 2008

Hyperon Identification

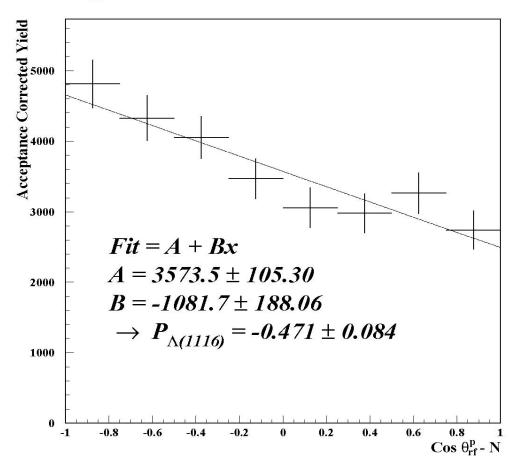
eK missing mass distribution with a proton cut.

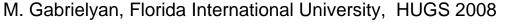


M. Gabrielyan, Florida International University, HUGS 2008

Extraction of Induced Polarization

$$\frac{dN^{\pm}}{d\cos\theta_p^{RF}} = N[1 + \alpha(P_{\Lambda}^0 \pm P_b P_{\Lambda}')\cos\theta_p^{RF}]$$





Summary and Future Work

- It is necessary to repeat induced polarization measurement. Previous measurement combines data from 4 different data sets with different energies and torus currents.
- New electroproduction cross sections resulting in structure function separation for both $K+\Lambda$ & $K+\Sigma$.
- Prospects for finding "missing" resonances decaying to strange final states would seem to be good given the wealth of new photo- and electroproduction data.

THANK YOU!

Quantum Mechanics

S-Wave

$$\psi_s = a_s Y_0^0 \chi^+,$$

P-Wave

$$\psi_p = a_p \left[\sqrt{\frac{2}{3}} Y_1^1 \chi^- - \sqrt{\frac{1}{3}} Y_1^0 \chi^+ \right],$$

$$|J=1/2, m_z=1/2\rangle = \psi = \psi_s + \psi_p = \left[a_p \sqrt{\frac{2}{3}} Y_1^1\right] \chi^- + \left[a_s Y_0^0 - a_p \sqrt{\frac{1}{3}} Y_1^0\right] \chi^+.$$

$$\psi^*\psi = a_p^2 \left(\sqrt{\frac{2}{3}}Y_1^1\right)^2 + \left(a_s Y_0^0 - a_p \sqrt{\frac{1}{3}}Y_1^0\right) \left(a_s Y_0^0 - a_p^* \sqrt{\frac{1}{3}}Y_1^0\right),$$

$$\psi^*\psi = |a_p|^2 \sin^2 \theta + |a_s|^2 + |a_p|^2 \cos^2 \theta - a_s[a_p + a_p^*] \cos \theta = |a_s|^2 + |a_p|^2 - 2a_s Re(a_p^*) \cos \theta.$$

$$\alpha = \frac{2a_s Re(a_p^*)}{|a_s|^2 + |a_p|^2}$$

$$I(\theta) = 1 - \alpha P \cos \theta$$

$$\pi_{\Lambda} = \pi_{Proton} \pi_{Pion} (-1)^{l}$$

Pol.		Response Functions								
β	α	Т	L	$^{c}\mathrm{LT}$	$^{s}\mathrm{LT}$	$^{c}\mathrm{TT}$	${}^s\mathrm{TT}$	cLT'	$^sLT'$	TT'
0	0	R_T^{00}	R_L^{00}	R_{LT}^{00}	0	R_{TT}^{00}	0	0	$R_{LT'}^{00}$	0
x'	0	0	0	0	$R_{LT}^{x'0}$	0	$R_{TT}^{x'0}$	$R_{LT'}^{x'0}$	0	$\boxed{ R^{x'0}_{TT'} }$
у'	0	$\mathbf{R}_T^{y'0}$	‡	‡	0	‡	0	0	‡	О
z'	0	0	0	0	$R_{LT}^{z'0}$	0	$R_{TT}^{z'0}$	$R_{LT'}^{z'0}$	0	$R_{TT'}^{z'0}$
0	x	0	0	0	R_{LT}^{0x}	0	R_{TT}^{0x}	$R_{LT'}^{0x}$	0	$R_{TT'}^{0x}$
0	у	\mathbf{R}_{T}^{0y}	R_L^{0y}	R_{LT}^{0y}	0	‡	0	0	$R_{LT'}^{0y}$	0
0	z	0	0	0	R_{LT}^{0z}	0	R_{TT}^{0z}	$R_{LT'}^{0z}$	0	$R_{TT'}^{0z}$
x'	x	$\mathbf{R}_T^{x'x}$	$R_L^{x'x}$	$R_{LT}^{x'x}$	0	‡	0	0	$\mathbf{R}_{LT'}^{x'x}$	0
x'	у	0	0	0	‡	0	‡	‡	0	‡
x'	z	$\mathbf{R}_T^{x'z}$	$\mathbf{R}_L^{x'z}$	‡	0	‡	0	0	‡	0
y'	x	0	0	0	‡	0	‡	‡	0	‡
y'	у	‡	‡	‡	0	‡	0	0	‡	0
у′	z	0	0	0	‡	0	‡	‡	0	‡
\mathbf{z}'	x	$\mathbf{R}_T^{z'x}$	‡	$R_{LT}^{z'x}$	0	‡	0	0	$R_{LT'}^{z'x}$	0
z'	у	0	O	0	‡	0	‡	‡	0	‡
z'	z	$\mathbf{R}_T^{z'z}$	‡	‡	0	‡	0	0	‡	0

Response functions for pseudo-scalar meson production.

G. Knochlein, D. Drechsel, L. Tiator, Z. Phys. A352,327(1995)

M. Gabrielyan, Florida International University, HUGS 2008